Enantioselective Total Synthesis of Either Enantiomer of the Antifungal Antibiotic Preussin (L-657,398) from (S)-Phenylalanine ${ }^{1}$

Wei Deng and Larry E. Overman*
Contribution from the Department of Chemistry, University of California, Irvine, California 92717-2025

Received June 22, 1994^{*}

Abstract

Enantioselective total syntheses of the antifungal agent $(+)$-preussin (1) and its enantiomer (-)-1 from (S)-phenylalanine are described. The central transformations are protic acid-promoted aza-Cope rearrangementMannich cyclization reactions ($\mathbf{1 2 \rightarrow 1 9}$ and $\mathbf{1 3 \rightarrow 2 7}$, Schemes 4 and 6). Retro-Mannich fragmentation-Mannich cyclization ($\mathbf{2 7} \rightarrow \mathbf{2 8}$, Scheme $\mathbf{6}$) is key to the formation of $(-) \mathbf{1}$. This study demonstrates, for the first time, that enantioenriched substituted pyrrolidines can be prepared using the aza-Cope-Mannich rearrangement.

$(+)$-Preussin (L-657,398, 1), a potent antifungal agent possessing a pyrrolidine skeleton, was isolated from fermentation broths of both Aspergillus ochraceus and Preussia sp. in the late 1980s by scientists at Squibb and Merck. ${ }^{2}$ This antibiotic and its acetate ester 2 show a broader spectrum of antifungal activity against both filamentous fungi and yeasts than the structurally related antibiotic anisomycin 3. ${ }^{2 \mathrm{a}}$ The structure of $(+)$-preussin was determined from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and nuclear Overhauser effect experiments, while Trost's O-methylmandelate ester method was employed to establish absolute configuration. ${ }^{2 b}$ The first total synthesis of $(+)$ preussin was reported by Pak and co-workers in 1991 and proceeded in 17 steps from D-glucose. ${ }^{3}$ Recently, concise asymmetric total syntheses of $(+)-1$ were described by Ohta and co-workers from (R)-phenylalanine, ${ }^{4}$ and by McGrane and Livinghouse and Overhand and Hecht from (S)-phenylalanine. ${ }^{5}$

$1 R=H(+)$-preussin
$2 R=A c$

anisomycin (3)

Investigations in our laboratories over several years have demonstrated the merit of the aza-Cope-Mannich reaction for preparing nitrogen heterocycles and complex alkaloids. ${ }^{1.6}$ This reaction appeared well-suited for the synthesis of 1 and a series of $C(5)$ analogs from (S)-phenylalanine. Herein, we describe in detail enantioselective total syntheses of both enantiomers of preussin, as well as investigations of stereoselection in aza-Cope-Mannich rearrangements of acyclic substrates. ${ }^{7}$

[^0]Scheme 1. Synthetic Plan

Results

Synthesis Plan. Our strategy was to form the ($2 S, 3 S, 5 R$)3 -acetyl-2-benzyl-5-nonylpyrrolidine (4) by rearrangement of iminium cation 6 , this latter intermediate being derived from acid-promoted condensation of amino alcohol 7 and decanal (Scheme 1). Analysis of the stereochemical outcome of the pivotal aza-Cope-Mannich rearrangement ($6 \rightarrow 4$) presupposes a chair topography for the sigmatropic reorganization and preferential rearrangement of an E iminium ion intermediate. ${ }^{6.7}$ If the product iminium ion sigmatropic isomer undergoes Mannich cyclization in the chair topography depicted in 5, acylpyrrolidine 4 would result. This cyclization topography has a syn-clinal orientation of the enol and iminium ion groups, ${ }^{8}$ while the nonyl substituent is oriented in a favored equatorial fashion. The S configuration at $\mathrm{C}(4)$ of the starting amino alcohol 7 would derive directly from (S)-phenylalanine. Although not anticipated at the outset of our investigations, it proved feasible to prepare ent-1 also in good efficiency from amino alcohol 7 (vide infra).
Preparation of the Rearrangement Precursors. We initially investigated preparation of the aza-Cope-Mannich rearrangement substrates from the known (S) α-amino ketone 8 , whose preparation from N-Boc-((S)-phenylalanine is described. ${ }^{9}$

[^1] 53, 685.
(8) Jacobsen, E. J.; Levin, J.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 4329.
(9) Kawai, M.; Boparai, A. S.; Bernatowicz, M. S.; Rich, D. H. J. Org. Chem. 1983, 48, 1876.

Scheme 2

Scheme 3

In our hands, the reaction of N-Boc-((S)-Phe with MeLi only provided 8 in moderate yield (40\%) (Scheme 2). However, N-Cbz-(S)-Phe was converted in 89% overall yield to the (S)-α-amino ketone 9 by way of the Weinreb amide intermediate. ${ }^{10,11}$ Subsequent treatment of 9 with vinylmagnesium bromide provided amino alcohol 10 and its diastereomer (ds $=$ $5-6: 1$, GLC or ${ }^{1} \mathrm{H}$ NMR analysis) in $67-76 \%$ yield. ${ }^{12}$ Under all conditions examined, this reaction failed to proceed to completion, returning $10-15 \%$ of 9 . The major stereoisomer 10 was obtained in high isomeric purity by recrystallization of the crude addition product from hexanes-EtOAc. Reduction of 10 with LiAlH_{4} then provided the N-methylamino alcohol 11. Alternatively, hydrolysis $\left(\mathrm{KOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ of $\mathbf{1 0}$ afforded the primary amino alcohol 12 . Treatment of 10 with KH and benzyl bromide, followed by hydrolysis of the resulting N-benzyloxazolidinone, afforded the N-benzylamino alcohol 13. The enantiomeric excess of 12 and 13 was determined to be $>94 \%$ by HPLC analysis using a Chiralcel OD column.

Formation of ($2 S, 3 S, 5 R$)-3-Acetylpyrrolidine 20 by Aza-Cope-Mannich Rearrangement of Oxazolidine 18. Our initial target was the all-cis N -methylpyrrolidine 17, an intermediate that would contain all the functionality of $(+)$-preussin except for the hydroxy group at $C(3)$. Conversion of amino alcohol 11 to the oxazolidine derivative 14 was readily accomplished by reaction with decanal in refluxing benzene with removal of water using a Dean-Stark trap (Scheme 3). However, aza-Cope-Mannich reorganization of this intermediate in refluxing $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA) did not afford 17, but rather two stereoisomers $15(44 \%)$ and 16 (38%), each having a trans relationship of the benzyl and acetyl groups. The relative stereochemistry of 15 and 16 was apparent from ${ }^{1} \mathrm{H}$ NMR

[^2]Scheme 4. Total Synthesis of (+)-Preussin from Amino Alcohol 12

DNOE experiments, and the stereostructure of 15 was confirmed by single-crystal X-ray analysis of the hydrochloride salt. ${ }^{13}$ Pyrrolidines 15 (42%) and 16 (29%) also were obtained when 11 and 1 equiv of decanal were heated in refluxing benzene in the presence of 0.9 equiv of camphorsulfonic acid (CSA). Although the absolute configurations of 15 and 16 were not established, in light of the results obtained in the related N -benzyl series (vide infra), these pyrrolidines almost certainly have the unnatural S configuration at $C(5)$.

Attempted rearrangement of oxazolidine 18, prepared similarly from the primary amino alcohol 12 and decanal, in refluxing TFA led to extensive decomposition (Scheme 4). However, treatment of 18 with 0.9 equiv of CSA in $\mathrm{CF}_{3} \mathrm{CH}_{2}-$ OH at $23^{\circ} \mathrm{C}$ yielded the desired all-cis pyrrolidine 19 as the major product ($500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the crude product mixture). Attempted purification of 19 by chromatography on silica gel led to some epimerization of the acetyl group. Therefore, the crude rearrangement product was treated directly with ethyl chloroformate and NaHCO_{3}. Rapid chromatography of the derived carbamates on silica gel then provided 20 in 61$68 \%$ yield from 12. The three other possible stereoisomeric carbamates were also isolated in a combined yield of $13-26 \%$; spectroscopic and analytical characterization data for these stereoisomers are summarized in the Experimental Section. HPLC analysis of 20 on Chiralcel OD showed that this intermediate had an enantiomeric purity (ee) of $80 \pm 3 \%$.

Since the ${ }^{1} \mathrm{H}$ NMR spectrum of 20 was complicated by carbamate conformational isomerism, the relative stereochemistry of this intermediate was ascertained by ${ }^{1} \mathrm{H}$ NMR analysis of 19 (Figure 1), which could be isolated by flash chromatography in low yield from the crude aza-Cope-Mannich rearrangement product. ${ }^{14}$ Particularly diagnostic were ${ }^{1} \mathrm{H}$ DNOE data which are summarized in Figure 1. Full assignments of the ${ }^{1} \mathrm{H}$ NMR signals of 15,19 , and 22 were made by ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ decoupling and/or ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY experiments.

[^3]

15

19

22

Figure 1. Diagnostic NOE Data for pyrrolidines 15, 19, and 22.
Baeyer-Villiger Oxidation of $\mathbf{2 0}$ and Completion of the Enantioselective Total Synthesis of (+)-Preussin. We next turned to the Baeyer-Villiger oxidation to introduce the required oxidation at $\mathrm{C}(3)$. Our earlier studies had demonstrated that N -acyl-(or N -alkoxycarbonyl)-protection of the pyrrolidine nitrogen, and the use of a powerful oxidant, would be required for this conversion. For example, oxidation of the N - $\mathrm{Cbz}-$ protected pyrrolidine 23 (available in two steps from 28, vide infra) with trifluoroperoxyacetic acid (TFPAA) provided the corresponding ester 25 in 62% yield (eq 1). In contrast, under similar conditions the N-methyl pyrrolidine ketone 16 provided acetate $\mathbf{2 4}$ in only 9% yield.

Attempted oxidation of the all-cis N-ethoxycarbonyl-protected pyrrolidine 20 (see Scheme 4) with m-CPBA, MMPP, or TMSOOTMS -TMSOTf ${ }^{15}$ returned only starting material. Although 20 underwent Baeyer-Villiger oxidation with 3,5dinitroperoxybenzoic acid, ${ }^{16}$ epimerization at $\mathrm{C}(3)$ and BaeyerVilliger oxidation of the resulting epimer was a competing process. Other, less common oxidation conditions examined without success included O_{3}-vinyl acetate ${ }^{17}$ and O_{2} - $\mathrm{PhCHO}-$ $\mathrm{Cu}(\mathrm{AcO})_{2} .^{18}$ Trifluoroperoxyacetic acid (TFPAA) ${ }^{19}$ was the best reagent found for the conversion of $\mathbf{2 0} \rightarrow 21$, providing the latter in a disappointing $26-31 \%$ yield (Scheme 4). ${ }^{20}$ Finally, reduction of 21 with LiAlH_{4} in refluxing $\mathrm{Et}_{2} \mathrm{O}$ provided $(+)$-preussin (1) in 94% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthetic 1 were in agreement with those reported, ${ }^{2}$ while synthetic $(+)-1$ exhibited $[\alpha]_{D}=+18.1^{\circ}$ (c $\left.0.55, \mathrm{CHCl}_{3}\right)$ indicative of an optical purity of $\sim 83 \%$.

Since 20 can be epimerized in 94% yield by exposure to DBU in acetone at room temperature (Scheme 5), Baeyer-Villiger oxidation of this epimer (ent-29), followed by reduction with LiAlH_{4} and inversion of the derived α alcohol by way of the $\mathrm{C}(3)$ ketone, would provide $(+)-1$ in higher overall yield from 20. The latter steps in this sequence were specifically optimized in the enantiomeric series leading to ent-preussin (vide infra).

[^4]Scheme 5. Alternate Endplay to $(+)$-Preussin

Scheme 6. Total Synthesis of (-)-Preussin from Amino Alcohol 13

Aza-Cope-Mannich Rearrangement of Amino Alcohol 13 Leading to the Formation of the ($2 S, 3 R, 5 S$)-3-Acetylpyrrolidine 27 and Ultimately ent-Preussin. The oxazolidine derivative 26 of the N-benzylamino alcohol 13 was produced in quantitative crude yield by condensation with decanal (Scheme 6). Aza-Cope-Mannich rearrangement of this intermediate in refluxing TFA provided two pyrrolidine products, $27(68-78 \%)$ and $28(6-10 \%)$. The enantiomeric excess, determined by HPLC analysis, of the major 2,5 -trans product 27 ranged from 78-88\% over various runs, while the ee of the 2,5 -cis isomer 28 was $79 \pm 1 \%$. Aza-Cope-Mannich reorganization of oxazolidine 26 could also be effected by treatment of 26 with 0.5 equiv of $\mathrm{Et}_{2} \mathrm{AlCl}$ in toluene at temperatures from 23 to $85^{\circ} \mathrm{C}$. Results of these experiments are summarized in Table 1. At room temperature, 27 was formed predominantly and in high ee (97%), while the enantiopurity of 28 was low ($28 \% \mathrm{ee}$). Diastereoselection was reversed at $85^{\circ} \mathrm{C}$ and notably

Table 1. Acid-Promoted Rearrangement of Oxazolidine 26

reaction conditions			products			
			27		28	
acid (equiv)	solvent	temp, ${ }^{\circ} \mathrm{C}$	yield, \%	ee, $\%^{a}$	yield, \%	ee, ψ^{b}
CSA (0.95)	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	23	60	86	7	$\mathrm{nd}^{\text {c }}$
TFA	TFA	72	68-78	78-88	6-10	78-80
$\mathrm{Et}_{2} \mathrm{AlCl}(0.5)$	PhMe	23	48	97	15	28
$\mathrm{Et}_{2} \mathrm{AlCl}(0.5)$	PhMe	85	16	85	67	62

${ }^{a}$ HPLC analysis on Chiralcel OJ ($98: 2$ hexane-EIOH). ${ }^{b}$ HPLC analysis on Chiralcel OJ ($99: 1$ hexane-EtOH). ${ }^{c}$ Not determined.

28 was produced in higher enantiopurity (62% ee). These results suggest that 28 is formed both directly from 26 (in low ee) and from 27 (in high ee). This hypothesis was confirmed by exposure of a sample of 27 (86% ee) to 0.1 equiv of $\mathrm{Et}_{2}-$ AlCl in toluene at $85^{\circ} \mathrm{C}$ for 1 h , which provided pyrrolidine 28 (70% yield, 86% ee) and $7-9 \%$ of recovered $27 .{ }^{21}$ Following this two-step sequence, enantioenriched 28 ($87 \pm 1 \%$ ee) could be prepared from 26 in 61% overall yield.

The stereochemistry of 28 was confirmed by ultimate conversion of this intermediate to ent-preussin (vide infra). The relative stereochemistry of pyrrolidine 27 was established by single crystal X-ray analysis of derivative 33, which was obtained from 27 in three steps and 55% overall yield (eq 2). ${ }^{13}$

The absolute configuration of 27 was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the (R) - and (S)-O-methylmandelate esters 35 and 36 of pyrrolidinol 34 (eq 3). ${ }^{22}$ Details of this analysis are provided in the Experimental Section.

$\xrightarrow[\substack{\text { (1) } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} \\ \text { (2) } \mathrm{EtOCOCl} \\ \text { (3) } \mathrm{TFPAA} \\ \text { (4) } \mathrm{LiAlH}_{4} \\ \text { (41\%) }}]{\substack{\text { RO }}}$
27 (41\%)

The synthesis of ent-preussin was readily accomplished from pyrrolidine ketone 28 as follows (Scheme 6). Debenzylation of $\mathbf{2 8}$, followed by ethoxycarbonylation, provided the pyrrolidine carbamate 29 in 87% yield. Baeyer-Villiger oxidation of this intermediate, which has a trans arrangement of the vicinal acetyl and benzyl groups, proceeded smoothly with trifluoroperoxyacetic acid to provide acetate 30 in 66% yield. Reduction of 30 with LiAlH_{4} provided 3-epi ent-preussin 31 in quantitative yield. Oxidation of 31 by the Swern procedure ($-66 \rightarrow-40$ ${ }^{\circ} \mathrm{C}$), ${ }^{23}$ followed by reduction of ketone 32 with LiAlH_{4} at -40
(21) This isomerization can be accomplished using 0.1-0.5 equiv of $\mathrm{Et}_{2}{ }^{-}$ $\mathrm{AlCl} ; 0.1$ equiy was optimal.
(22) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370.
(23) Mancuso, A. J.; Huang, S. -L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
${ }^{\circ} \mathrm{C}$ in THF (ds $=12: 1$), provided ent-preussin in 90% yield. ent-1 exhibited a specific rotation, $[\alpha]_{\mathrm{D}}=-21.6^{\circ}$ (c 1.0, CHCl_{3}), of similar magnitude, but opposite in sign, to that of natural $(+)$-preussin, $[\alpha]_{D}=+22.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. $^{2 \mathrm{~b}, 24}$

Discussion

Synthetic Aspects. Both (+)- and (-)-preussin have been synthesized from the readily available (S)-ketone 9 ; the natural dextrorotatory isomer was obtained in five steps and 11% overall yield, while levorotatory ent-preussin was obtained in nine steps and 18% overall yield. Aza-Cope-Mannich rearrangement of the primary amino alcohol 12 and decanal proceeds with $\sim 80 \%$ retention of absolute chirality to afford, after ethoxycarbonylation, the all-cis acetylpyrrolidine carbamate 20 . This intermediate is transformed to $(+)$-preussin in two additional steps. The efficiency of this latter conversion is only moderate due to the poor yield realized in the Baeyer-Villiger oxidation of $\mathbf{2 0}$. In contrast, aza-Cope-Mannich rearrangement of decanal and the N-benzylamino alcohol 13 affords the 2,5-trans acetylpyrrolidine 27 in $\sim 87 \%$ enantiopurity. Since this product can be equilibrated to the 2,5 -cis isomer 28 , without loss of enantiomeric purity, ent-preussin is available in five additional steps. By changing the aldehyde component of the aza-Cope-Mannich rearrangement step, a wide variety of $\mathrm{C}(5)$ analogs of $(+)$ - or $(-)$-preussin should be readily available.

Mechanistic Aspects. This study raises two interrelated questions: First, why does aza-Cope-Mannich rearrangement of oxazolidine 18 having an NH substituent preferentially form the all-cis acetylpyrrolidine 19 , while similar rearrangements of the N -substituted oxazolidines 14 and 26 afford predominantly acetylpyrrolidine products ($\mathbf{1 5}$ and 27) having a trans relationship of the $\mathrm{C}(2)$ benzyl and $\mathrm{C}(5)$ nonyl substituents? Second, why is enantiopurity partially eroded in the aza-CopeMannich reorganization? To address these questions we make several assumptions, some of which derive experimental support from our earlier mechanistic investigations of the aza-CopeMannich reaction. ${ }^{7.8}$ We assume that (a) the [3,3]-reorganization occurs by a chair topography, ${ }^{7}$ (b) intramolecular Mannich cyclization takes place preferentially with a synclinal orientation of the donor and acceptor π-systems, ${ }^{8}$ (c) intramolecular Mannich cyclization is more rapid than stereomutation of the enol and iminium groups, and (d) pyrrolidines having a cis relationship of the acetyl and benzyl groups epimerize at $\mathrm{C}(3)$ under the reaction conditions. As outlined in Scheme 7, even with the first three simplifying assumptions, all eight possible stereoisomeric acetylpyrrolidine products (four enantiomer pairs) can be formed.

Acid-promoted ring opening of oxazolidine 37 provides the stereoisomeric iminium ions 38 and 42, which are interconvertable by way of 37 (Scheme 7). In the primary amine series ($\mathrm{R}=\mathrm{H}$), the E stereoisomer 38 would be highly favored at equilibrium. Aza-Cope rearrangement of $\mathbf{3 8}$ provides 39, which could directly cyclize to $\mathbf{4 0}$, the major product observed in the NH series. Alternative Mannich cyclization of rotamer $\mathbf{4 6} \rightarrow$ ent- 44 should be less favorable due to the quasi-axial orientation of the nonyl substituent.

The reason for the preferential formation of acetylpyrrolidine 27 (equivalent to $\mathbf{4 4}, \mathrm{R}=\mathrm{Bn}$, in Scheme 7) in high enantiopurity from protic and Lewis acid-promoted aza-Cope-Mannich rearrangement of the N-benzyloxazolidine precursor is less clear.

[^5]Scheme 7. Formation of All Eight Possible Stereoisomeric 3-Acetylpyrrolidines from aza-Cope-Mannich Rearrancement of Oxazolidine 37

In the N-benzyl series, iminium ion stereoisomers 38 and 42 would be of comparable stability. Since, 38 is expected to undergo chair topography [3,3]-sigmatropic rearrangement more rapidly than $\mathbf{4 2}, 6.7$ the preferential formation of acetylpyrrolidine $44(\mathrm{R}=\mathrm{Bn})$ suggests that iminium ions $38(\mathrm{R}=\mathrm{Bn})$ and 42 ($\mathrm{R}=\mathrm{Bn}$) are not in rapid equilibrium. Possibly in the N-benzyl series, the Z iminium ion $\mathbf{4 2}$ is formed preferentially from ring opening of oxazolidine $37(\mathrm{R}=\mathrm{Bn})$ and subsequently undergoes aza-Cope-Mannich rearrangement more rapidly than it equilibrates with 38 . Sigmatropic rearrangement of $\mathbf{4 2}$ would yield 43, which upon direct Mannich cyclization and epimerization at $\mathrm{C}(3)$ would provide the major observed product $45(\mathrm{R}=$ Bn). In this mechanistic scenario, $\mathrm{C}-\mathrm{C} \sigma$-bond rotation of $\mathbf{4 3}$ must be slower than Mannich cyclization, since cyclization of rotamer $\mathbf{4 7} \rightarrow$ ent $\mathbf{- 4 0}$ would appear to be more favorable. This latter supposition contrasts with one conclusion of our earlier mechanistic investigation of the aza-Cope-Mannich reaction. ${ }^{8}$ In this previous study, the product of aza-Cope rearrangement contained no stereogenic centers, and the complete racemization observed required that Mannich cyclization was slower than $\mathrm{C}-\mathrm{C} \sigma$-bond rotation (Scheme 8). It should be noted that in this former study a $\mathrm{CH}_{2} \mathrm{CH}_{2}$ fragment connects the iminium and enol groups, ${ }^{8}$ suggesting that the barrier for conformational equilibration could have been lower than in the present series. ${ }^{25.26}$

[^6]Scheme 8

Why might the Z iminium ion $\mathbf{4 2}$ be formed preferentially from the N-benzyloxazolidine precursor? In the NH series, oxazolidine 18 is a $\sim 3: 1$ mixture of stereoisomers, whose stereostructures could be assigned by ${ }^{1} \mathrm{H}$ NMR DNOE experiments (Figure 2). Particularly diagnostic was the large (5\%)

18a

18b

26

Figure 2. ${ }^{1} \mathrm{H}$ NMR DNOE of oxazolidines $18 \mathrm{a}, \mathbf{1 8 b}$, and 26.

NOE observed between the cis methine hydrogens at $C(2)$ and $\mathrm{C}(4)$ of the major stereoisomer 18a. In contrast, in the N-benzyl

48A

49A

Figure 3. Molecular mechanics (MM2*) estimates of the lowest energy conformations of 48 and 49. An ethyl group is employed to model the nonyl side chain. Conformer 48 A is $2.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than 49A.

Scheme 9

series only a single oxazolidine stereoisomer is apparent in the $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6}$; the large NOE for the methine hydrogens flanking nitrogen signals the configuration depicted in Figure 2. Stereoelectronic considerations require that oxazolidine 26 adopt a conformation having an antiperiplanar orientation of the nonbonded electron pair on nitrogen and the oxygen prior to opening of the oxazolidine ring. As depicted in Scheme 9, pyramidal inversion of $\mathbf{2 6}$ would form 48, which could fragment to the E iminium ion $38(\mathrm{R}=\mathrm{Bn})$. Alternatively, pseudorotation of $\mathbf{2 6}$ could provide a twist conformation represented by 49 , which upon ring opening would form the Z iminium ion $\mathbf{4 2}(\mathrm{R}=\mathrm{Bn})$.

To pursue what might be required for the $26 \rightarrow \mathbf{4 9} \rightarrow \mathbf{4 2}$ pathway to be favored, we evaluated the relative energies of oxazolidine conformers 48 and 49 by molecular mechanics calculations using the MM2* force field. Fixing the dihedral angle between the nitrogen nonbonded electron pair and the $\mathrm{C}-\mathrm{O} \sigma$ bond at $180 \pm 5^{\circ}$, Still's internal coordinate Monte Carlo search method was utilized to search for the lowest energy conformations. ${ }^{27}$ These minimum energy conformations, 48A and 49A, are shown in Figure 3. ${ }^{28}$ As one might anticipate the nonbonded interaction between the benzyl and ethyl (nonyl) substituents in 49A is sufficient to make this conformation slightly higher in energy ($2.2 \mathrm{kcal} / \mathrm{mol}$) than conformer 48A. Thus, if $\mathbf{4 2}$ is formed preferentially, the kinetic bias must reside in the ring-opening step.

The mechanistic analysis depicted in Scheme 7 highlights how easily enantiomeric purity can be eroded in aza-CopeMannich rearrangements that form substituted pyrrolidines. All

[^7]Scheme 10

that is required is for the aza-Cope rearrangement to take place from the alternate iminium ion stereoisomer, which "epimerizes" $\mathrm{C}(5)$, and the Mannich cyclization to occur from the alternate stereoface of the rearranged iminium cation, which "epimerizes" $\mathrm{C}(2)$ and $\mathrm{C}(3)$. This is exemplified by the formation of the enantiomer of $\mathbf{4 4}$ following the sequence $\mathbf{3 8} \rightarrow \mathbf{3 9} \rightarrow \mathbf{4 6} \rightarrow$ ent-44..27,28 The opportunities for racemization are even greater than depicted in Scheme 7. For example, aza-Cope rearrangement of $\mathbf{3 8}$ in a boat topography (which although disfavored, nonetheless must occur to a certain extent ${ }^{7}$) would yield 43 . Also, retro-Mannich fragmentation-Mannich cyclization (as observed for the conversion of $\mathbf{2 7} \boldsymbol{\mathbf { 2 8 }}$) could also epimerize carbons 2 and $3 .{ }^{29}$
The transformation of acetylpyrrolidine $\mathbf{2 7} \rightarrow 28$ requires brief comment (Scheme 6). This isomerization, which takes place without loss of enantiomeric purity, undoubtedly results from a retro-Mannich-Mannich sequence (Scheme 10). As shown in Scheme 10, molecular mechanics calculations (with Et used to model the nonyl substituent) support the notion that 28 would be thermodynamically favored in such an equilibration. ${ }^{28,30}$

Conclusion

The aza-Cope-Mannich reaction has been used to synthesize $(+)$-preussin, and its enantiomer, from commercially available N-(benzyloxycarbonyl)-L-phenylalanine by short ($7-11$ steps), reasonably efficient ($\sim 8 \%$ overall yield) sequences. This preparative approach would appear to be particularly attractive for preparing $\mathrm{C}(5)$ side chain analogs of preussin. Moreover, this study for the first time shows that enantioenriched pyrrolidines can be prepared using the aza-Cope-Mannich rearrangement. Prior to this demonstration, the aza-Cope-Mannich rearrangement had been employed exclusively for the enantioselective synthesis of more complex nitrogen heterocycles, where racemization is less likely or impossible. ${ }^{1,6}$

Experimental Section ${ }^{31}$

(3S,4S)-4-(N-(Benzyloxycarbonyl)amino)-3-methyl-5-phenyl-1-penten-3-ol (10). To a solution of (S)-3-(N-(benzyloxycarbonyl)-amino)-4-phenyl-2-butanone $(9,8.60 \mathrm{~g}, 28.9 \mathrm{mmol}$; prepared in 89% yield from N -Cbz-phenylalanine) ${ }^{11}$ and dry THF (200 mL) cooled to 0 ${ }^{\circ} \mathrm{C}$ was added dropwise over 1.5 h a THF solution of vinylmagnesium bromide ($1.0 \mathrm{M}, 170 \mathrm{~mL}$). The reaction solution was maintained at
(29) For other reports of partial racemization in Mannich cyclizations resulting from aza-Cope equilibration, see: (a) Meyers, A. I.; Miller, D. B.; White, F. H. J. Am. Chem. Soc. 1988, 110, 4778. (b) Guiles, J. W.; Meyers, A. I. J. Org. Chem. 1991, 56, 6873.
(30) The relative energies for compounds 27 and 28 were found using the MM2 ${ }^{*}$ force field in the Monte Carlo search routine of MacroModel V3.5X. Five hundred structures were searched for each compound and the energies for the global minima are displayed in Scheme 10.
$23^{\circ} \mathrm{C}$ for 21 h , at which time it was poured into ice-cooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (400 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 400 \mathrm{~mL}$), and the combined organic phases were washed with brine ($2 \times 600 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification of the residue (silica gel, $5: 1$ hexanesEtOAc) provided 10, which was recrystallized (hexanes-EtOAc) to provide $7.12 \mathrm{~g}(76 \%, 86 \%$ based on consumed starting material) of isomerically pure $\mathbf{1 0}$ as colorless needles, $\mathrm{mp} 99.5-102{ }^{\circ} \mathrm{C}$, and 1.02 $\mathrm{g}(12 \%)$ of recovered ketone. 10 : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-$ $7.12(\mathrm{~m}, 5 \mathrm{H}), 5.97(\mathrm{dd}, J=17.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{dd}, J=10.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ $(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H})$, 3.12 (dd, $J=14.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (br s, 1H), 2.58 (dd, $J=14.0$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8$, $142.5,138.5,136.5,129.0,128.3,127.9,127.7,126.3,113.7,75.6$, $66.6,60.0,35.6,24.9 \mathrm{ppm}$; IR (KBr) 3452, 3383, 1672, 1545, 1261, $747 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) m/z 326.1771 (326.1756 calcd for $\left.\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}, \mathrm{MH}\right) ;[\alpha]^{28} \mathrm{D}=-87.3^{\circ},[\alpha]^{28}{ }_{577}=-90.9^{\circ},[\alpha]^{28}{ }_{546}=$ $-104^{\circ},[\alpha]^{28}{ }_{435}=-188^{\circ},[\alpha]^{28}{ }_{405}=-230^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 73.82; H, 7.12; N, 4.30. Found: C, 73.69; H, 7.16; N, 4.23.
(3S,4S)-4-(N-Methylamino)-3-methyl-5-phenyl-1-penten-3-ol (11). To a suspension of $\mathrm{LiAlH}_{4}(350 \mathrm{mg}, 9.23 \mathrm{mmol})$ in dry THF (4 mL) was added dropwise at $0^{\circ} \mathrm{C}$ over 10 min a solution of $10(1.00 \mathrm{~g}, 3.08$ $\mathrm{mmol})$ and dry THF (4 mL). The reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$, and the resulting slurry was heated at reflux for 18 h . The reaction mixture then was cooled in an ice bath, and $\mathrm{H}_{2} \mathrm{O}(0.35$ $\mathrm{mL}), 15 \% \mathrm{NaOH}(0.35 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1.05 \mathrm{~mL})$ were added sequentially with stirring. The heterogeneous mixture was maintained at $23^{\circ} \mathrm{C}$ for 1 h , at which time the solid was removed by filtration. The filtrate was concentrated and the residue chromatographed (silica gel, $1: 1$ hexanes-EtOAc) to afford $608 \mathrm{mg}(96 \%)$ of 11 as a paleyellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.97$ (dd, $J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (dd, $J=17.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=10.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=$ $10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.22$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,139.7,129.8,128.5$, 126.2, $113.4,73.8,69.2,37.4,22.5 \mathrm{ppm}$; IR (film) $3418,3343,1500$, $1456,1106 \mathrm{~cm}^{-1}$, HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 206.1557$ (206.1545 calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}, \mathrm{MH}\right) ;[\alpha]^{28} \mathrm{D}=7.8^{\circ},[\alpha]^{28}{ }_{577}=4.4^{\circ},[\alpha]^{28}{ }_{546}=4.2^{\circ}$, $[\alpha]^{26}{ }_{435}=10.2^{\circ},[\alpha]^{26} 405=10.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(3S, 4S)-4-Amino-3-methyl-5-phenyl-1-penten-3-ol (12). A mixture of $10(1.00 \mathrm{~g}, 3.08 \mathrm{mmol}), \mathrm{KOH}(20.7 \mathrm{~g}), \mathrm{MeOH}(24 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was heated at reflux for 12 h , cooled in a water bath to 23 ${ }^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$. The combined extracts were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated. Purification of the residue on silica gel ($2: 1$ hexanesEtOAc and then EtOAc) provided $12\left(586 \mathrm{mg}, 100 \%, 94 \% \mathrm{ee}^{34}\right)$ as a pale-yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.16(\mathrm{~m}, 5 \mathrm{H})$,

[^8]5.92 (dd, $J=17.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{dd}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (dd, $J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, $J=13.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.0, 139.5, 129.1, 128.6, 126.3, 113.5, 73.7, 59.0, 37.4, 22.5 ppm ; IR (film) 3453, 2978, 2929, 1496, 1455, 999, $734 \mathrm{~cm}^{-1}$; HRMS (EI) $\mathrm{m} / \mathrm{z} 192.1393$ (192.1388 calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}, \mathrm{MH}\right)$. $[\alpha]^{26}{ }_{\mathrm{D}}=-64.2^{\circ},[\alpha]^{26}{ }_{577}=-65.9^{\circ},[\alpha]^{26_{546}}=$ $-77.9^{\circ},[\alpha]^{26}{ }_{435}=-141.3^{\circ},[\alpha]^{26}{ }_{405}=-174.4^{\circ}$ (c 1.0, CHCl_{3}). Benzoyltartaric acid salt: mp $162-163^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{31}-$ $\mathrm{NO}_{9}: \mathrm{C}, 65.55 ; \mathrm{H}, 5.69 ; \mathrm{N}, 2.55$. Found: C, $65.35 ; \mathrm{H}, 5.73 ; \mathrm{N}, 2.48$.
(3S,4S)-4-(N-Benzylamino)-3-methyl-5-phenyl-1-penten-3-ol (13). To a suspension of oil-free $\mathrm{KH}(2.2 \mathrm{~g}, 55 \mathrm{mmol})$ in $9: 1 \mathrm{Et}_{2} \mathrm{O}$-DMSO (38 mL) was added dropwise a solution of $10(3.60 \mathrm{~g}, 11.1 \mathrm{mmol})$ and dry $\mathrm{Et}_{2} \mathrm{O}(151 \mathrm{~mL})$ over 30 min at $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and was maintained at this temperature for 1.5 h . The reaction mixture was then cooled in an ice bath, neat benzyl bromide ($9.47 \mathrm{~g}, 55.4 \mathrm{mmol}$) was added dropwise over 10 min , and after 10 additional min the cooling bath was removed. Water $(5.5 \mathrm{~mL})$ then was added, the reaction was maintained at $23^{\circ} \mathrm{C}$ for 1 h , and $\mathrm{Et}_{2} \mathrm{O}$ then was removed in vacuo at $23^{\circ} \mathrm{C}$. Solid $\mathrm{KOH}(74 \mathrm{~g}, 120$ equiv), $\mathrm{MeOH}(82 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(27 \mathrm{~mL})$ were added, and the resulting mixture was heated at reflux for 16 h . After cooling to $23^{\circ} \mathrm{C}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$, and the combined organic layers were washed with brine $(2 \times 500 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. Purification of the residue on silica gel (5:1 hexanes-EtOAc) provided 3.02 g (97% yield, $97 \% \mathrm{ee}^{34}$) of 13 as a light yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-6.97$ $(\mathrm{m}, 10 \mathrm{H}), 6.05(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=17.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.9,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{dd}, J=10.8,3.4, \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.9,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,139.9$, $139.5,129.0,128.6,128.3,128.2,128.1,127.0,126.4,113.5,73.8$, 66.8, 54.5, $37.6,22.4 \mathrm{ppm}$; IR (film) $3421,3388,3003,2978,2860$, 1495, 1454, 1102, 922, $741 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 282.1845$ (282.1850 calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}, \mathrm{MH}$). $[\alpha]^{25}{ }_{\mathrm{D}}=-42.2^{\circ},[\alpha]^{26}{ }_{577}=$ $-41.5^{\circ},[\alpha]^{25}{ }_{546}=-48.9^{\circ},[\alpha]^{25}{ }_{435}=-93.9^{\circ},[\alpha]^{25}{ }_{405}=-119^{\circ}(c 1.0$, CHCl_{3}). Hydrochloride salt: $\mathrm{mp} 156-158^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}: \mathrm{C}, 71.89 ; \mathrm{H}, 7.63 ; \mathrm{N}, 4.42$. Found: C, $71.74 ; \mathrm{H}, 7.64$; N, 4.44.

Camphorsulfonic Acid (CSA)-Promoted Aza-Cope-Mannich Reaction of 11 and Decanal. Preparation of Acetylpyrrolidines 15 and 16. A solution of 11 ($500 \mathrm{mg}, 2.44 \mathrm{mmol}$), freshly distilled decanal ($380 \mathrm{mg}, 2.44 \mathrm{mmol}$), CSA ($99 \%, 509 \mathrm{mg}, 2.19 \mathrm{mmol}$), and dry benzene (20 mL) was heated at reflux using a Dean-Stark $\mathrm{H}_{2} \mathrm{O}$ separator for 24 h . After cooling to $23^{\circ} \mathrm{C}$, the reaction mixture was quenched with $1 \mathrm{~N} \mathrm{NaOH}(30 \mathrm{~mL})$, and the organic layer was separated, washed with water ($2 \times 80 \mathrm{~mL}$) and brine ($2 \times 80 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and concentrated. Purification of the residue on silica gel ($10: 1$ to $5: 1$ hexanes-EtOAc) provided pure samples of acetylpyrrolidines 15 ($354 \mathrm{mg}, 42 \%$) and $16(246 \mathrm{mg}, 29 \%) .15:{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.10-6.90(\mathrm{~m}, 5 \mathrm{H}), 3.54$ (ddd, $J=10.2,4.2,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddd}$, $J=9.5,4.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=14.5,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.25$ $(\mathrm{m}, 16 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 208.9,139.2,129.3,128.5,126.2,67.9,62.7,53.8,35.5,35.1,31.9$, 31.8, 30.0, 29.6, 29.6, 29.3, 28.6, 26.6, 22.7, 14.1 ppm; IR (film) 2927, $2855,1714,1486,1357,700 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 344.2949$ (344.2875 calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}, \mathrm{MH}$). $[\alpha]^{23} \mathrm{D}=12.4^{\circ},[\alpha]^{23}{ }_{577}=10.4^{\circ}$, $[\alpha]^{23}{ }_{546}=11.7^{\circ},[\alpha]^{23}{ }_{435}=19.3^{\circ},[\alpha]^{23}{ }_{405}=13.7^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right)$. Hydrochloride salt: mp $145-6{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NOCl}$: C, 72.70; H, 10.08; N, 3.69. Found: C, 72.48; H, 10.04; N, 3.64. 16: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 3.11$ (dd, $J=13.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.30$ $(\mathrm{m}, 17 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^9]$\delta 210.1,138.8,129.5,128.2,126.2,70.4,66.2,53.4,40.5,38.8,34.1$, $33.8,31.8,29.9,29.4,29.2,26.2,22.6,14.0 \mathrm{ppm}$; IR (film) 2926, 2855, 1711, 1496, 1353, $700 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 344.2942$ (344.2953 calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}, \mathrm{MH}$); $[\alpha]^{22}{ }_{\mathrm{D}}=-1.2^{\circ},[\alpha]^{22}{ }_{577}=-5.0^{\circ}$, $[\alpha]^{22_{546}}=-5.4^{\circ},[\alpha]^{22}{ }_{435}=-3.1^{\circ},[\alpha]^{22_{405}}=-0.8^{\circ}\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$.
(2S,3S,5R)-3-Acetyl-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine (20). A mixture of amino alcohol 12 ($300 \mathrm{mg}, 1.57 \mathrm{mmol}$), freshly distilled decanal ($258 \mathrm{mg}, 1.57 \mathrm{mmol}$), and dry benzene (2 mL) was heated at reflux for 2 h in a Soxhlet apparatus containing CaC_{2}. Concentration at $23{ }^{\circ} \mathrm{C}$ provided the crude oxazolidine 18 as a $3: 1$ mixture of stereoisomers: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.25$ (m , major and minor), 5.85 (dd, $J=17.9,10.7 \mathrm{~Hz}$, minor), 5.83 (dd, $J=17.3,10.7 \mathrm{~Hz}$, major), 5.31 (dd, $J=7.2,1.5, \mathrm{~Hz}$, minor), 5.28 (dd, $J=16.1,1.4 \mathrm{~Hz}$, major), 5.08 (dd, $J=10.7,1.2 \mathrm{~Hz}$, major and minor), 4.85 (t, $J=5.7 \mathrm{~Hz}$, minor), $4.57(\mathrm{t}, J=5.3 \mathrm{~Hz}$, major), 3.31 (dd, $J=9.5,4.8 \mathrm{~Hz}$, major and minor), $2.84-2.71$ (m , major and minor), 2.53 (broad s , major and minor), 1.72-1.66 (m , major and minor), $1.50-1.42$ (m , major and minor), $1.38-1.26$ (m , major and minor), $0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}$, minor), $0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}$, minor) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4$ (minor), 142.5 (major), 139.2 (minor), 138.9 (major), 129.0 (minor), 128.8 (major), 128.5 (major), 128.3 (minor), 126.4 (major), 126.2 (mmor), 113.0 (minor), 112.8 (major), 90.7 (major), 90.4 (minor), 82.5 (minor), 81.4 (major), 68.3 (major), 66.0 (minor), 43.9, 36.3, 35.5, 35.4, 35.2, 31.9, 29.6, 29.55, $29.5,29.4,29.35,29.3,29.27,29.2,29.1,25.4,25.0$ (major), 22.6 (major), 22.0 (minor), 19.8 (minor), 14.1 ppm .

A solution of this sample of $18, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(4 \mathrm{~mL})$, and camphorsulfonic acid ($99 \%, 350 \mathrm{mg}, 1.49 \mathrm{mmol}$) was maintained at $23^{\circ} \mathrm{C}$ for 40 h . After concentration, the residue was dissolved in $\mathrm{CHCl}_{3}(100$ mL) and then washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 50 \mathrm{~mL})$ and brine (50 mL). This solution was then dried over MgSO_{4} and concentrated, and the crude pyrrolidine products were dissolved in $\mathrm{CHCl}_{3}(16 \mathrm{~mL})$. Ethyl chloroformate ($0.23 \mathrm{~mL}, 2.4 \mathrm{mmol}$) and solid $\mathrm{NaHCO}_{3}(1.3 \mathrm{~g}, 15 \mathrm{mmol})$ were added. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h and then filtered. The concentrated filtrate was purified on silica gel ($15: 1$ hexanes-EtOAc) to provide pyrrolidine 20 ($383 \mathrm{mg}, 61 \%$ yield, 77% ee^{35}), a mixture of three additional stereoisomers (26%), and recovered oxazolidine $18(2 \%) . \quad 20:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta$ $7.17-6.96(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{dd}, J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H})$, $3.65(\mathrm{~m}, 1 \mathrm{H}), 2.72$ (dd, $J=13.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.8,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=12.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=$ $13.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 15 \mathrm{H}), 1.01(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5}-$ $\left.\mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 203.8,155.2,139.3,130.6,128.5,126.7,61.6,60.9$, $58.1,54.6,39.3,37.2,32.5,32.2,30.3,30.2,30.0,29.9,26.7,23.1$, $20.0,14.8,14.2 \mathrm{ppm}$; IR (film) 2954, 1708, $1686,1410,1281 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 402.3001$ (402.3008 calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{3}$, $\mathrm{MH}) ;[\alpha]^{25}{ }_{\mathrm{D}}=-26.7^{\circ},[\alpha]^{25}{ }_{577}=-26.1^{\circ},[\alpha]^{25}{ }_{546}=-29.0^{\circ},[\alpha]^{25}{ }_{435}$ $=-34.2^{\circ},[\alpha]^{25}{ }_{405}=-29.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{39^{-}}$ $\mathrm{NO}_{3}: \mathrm{C}, 74.76 ; \mathrm{H}, 9.79 ; \mathrm{N}, 3.49$. Found: C, $74.67 ; \mathrm{H}, 9.83 ; \mathrm{N}, 3.43$.

Diagnostic characterization data for the three minor stereoisomers follows. (2S,3R,5R)-3-Acetyl-2-benzyl-1-ethoxycarbonyl-5-nonylpyrrolidine: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100{ }^{\circ} \mathrm{C}\right) \delta 7.10-6.96(\mathrm{~m}$, $5 \mathrm{H}), 4.46(\mathrm{dt}, J=8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.93$ (m, 1H), 3.21 (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dt, $J=7.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (ddd, $J=11.9,7.6,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.24(\mathrm{~m}$, $15 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; HRMS (CI, isobutane) $m / z 402.3009$ (402.3008 calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{3}, \mathrm{MH}$). (2R,3S,5R)-3-Acetyl-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 7.11-6.96(\mathrm{~m}, 5 \mathrm{H})$, $4.58(\mathrm{dt}, J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J$ $=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=13.2,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70(\mathrm{dt}, J=13.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 15 \mathrm{H})$, $1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; HRMS (CI, isobutane) $m / z 402.3008$ (402.3008 calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{3}, \mathrm{MH}$). ($2 R, 3 R, 5 R$)-3-Acetyl-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 7.20-6.95(\mathrm{~m}, 5 \mathrm{H})$,

[^10] $\mathrm{mL} / \mathrm{min}$.
4.45-4.40 (m, 1H), 4.10-4.00 (m, 2H), 3.75-3.65 (m, 1H), 3.00$2.88(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=13.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.6,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{dt}, J=12.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dd}, J=12.9,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 16 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (t, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 402.2993$ (402.3008 calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{3}, \mathrm{MH}$).

Conversion of Acetylpyrrolidine 20 to ent-29. A solution of 20 ($27 \mathrm{mg}, 0.0673 \mathrm{mmol}, 77 \%$ ee), 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU) $(0.25 \mathrm{~mL})$, and acetone (1 mL) was maintained at $23^{\circ} \mathrm{C}$ for 2 h, at which time $3 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$, and the combined organic phases were washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), dried over MgSO_{4}, and concentrated. Purification of the residue by flash chromatography (silica gel, $15: 1$ hexanes-EtOAc) provided ent-29 ($25.5 \mathrm{mg}, 94 \%$) as a light yellow oil: $[\alpha]^{24} \mathrm{D}=-23.2^{\circ}$, $[\alpha]^{24}{ }_{577}=-26.1^{\circ},[\alpha]^{24}{ }_{546}=-26.5^{\circ},[\alpha]^{24}{ }_{435}=-54.5^{\circ},[\alpha]^{24}{ }_{405}=$ -66.7° ($с 0.70, \mathrm{CHCl}_{3}$).
($\mathbf{2 S , 3 S , 5 R}$)-3-Acetoxy-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine (21). To a suspension of urea- $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{19}(98 \%, 1.60 \mathrm{~g}, 16.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise over 5 min at $0^{\circ} \mathrm{C}$ trifluoroacetic anhydride (TFAA, $877 \mathrm{mg}, 0.590 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The resulting mixture was maintained at $0^{\circ} \mathrm{C}$ for 30 min before a solution of 3-isobutyl-4-hydroxy-5-methylphenylsulfide (4 mg), acetylpyrrolidine $20(134 \mathrm{mg}, 0.334 \mathrm{mmol}, 77 \% \mathrm{ee})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ was added. This resulting suspension was allowed to stir at $0^{\circ} \mathrm{C}$ for 108 h at which time additional TFAA (0.118 mL) was added. The reaction mixture then was allowed to warm to $23^{\circ} \mathrm{C}$, and after an additional 24 h , was partitioned between $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Solid NaHCO_{3} was added until the pH of the aqueous layer was $7-8$. The aqueous layer was separated, extracted with $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(2 \times 60 \mathrm{~mL})$, and the combined organic phases were washed with brine (2×150 mL), dried over MgSO_{4}, and concentrated to give a thick yellow oil. Chromatography of the residue on silica gel (10:1 hexanes-EtOAc) provided $21(42.7 \mathrm{mg}, 31 \%)$, the alcohol resulting from acetate cleavage ($4.0 \mathrm{mg}, 3.2 \%$), and starting ketone 20 ($7.0 \mathrm{mg}, 5.2 \%$). 21: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 7.20-6.96(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{dd}, J=$ $7.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=12.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.70$ (m, 1H), $3.01(\mathrm{dd}, J=13.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=13.7,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{dt}, J=13.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.23(\mathrm{~m}, 16 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}$) $\delta 169.0,155.7,139.8,130.0$, $128.5,126.4,73.1,61.2,60.9,56.8,37.5,37.1,35.6,32.3,30.1,29.8$, $26.8,23.1,20.3,14.8,14.2 \mathrm{ppm}$; IR (film) $3029,2954,1744,1697$, $1379,1237 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 418.2955$ (418.2976 calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{4}, \mathrm{MH}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-40.3^{\circ},[\alpha]^{25}{ }_{577}=-45.3^{\circ},[\alpha]^{25}{ }_{546}=$ $-51.6^{\circ},[\alpha]^{25}{ }_{435}=-35.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{39}-$ $\mathrm{NO}_{4}: \mathrm{C}, 71.89, \mathrm{H} ; 9.42 ; \mathrm{N}, 3.36$. Found: C, 71.97; H, $9.44 ; \mathrm{N}, 3.30$.

Formation of (+)-Preussin (1) from 21. A mixture of 21 (30 mg , $0.072 \mathrm{mmol})$ and LiAlH_{4} powder $(95 \%, 14 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ was heated at reflux for 2.5 h and then cooled in an ice bath. Ether $(5.0 \mathrm{~mL})$ then was added followed by $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(\sim 200$ mg), the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h and filtered, and the filtrate was concentrated. Purification of the residue on silica gel (4:1 hexanes-EtOAc) provided (+)-1 ($21.4 \mathrm{mg}, 94 \%$) as a yellowish wax: $[\alpha]^{24} \mathrm{D}=+18.1^{\circ},[\alpha]^{24}{ }_{577}=+14.6^{\circ},[\alpha]^{24}{ }_{546}=+15.5^{\circ}$, $[\alpha]^{24}{ }_{435}=+37.1^{\circ},[\alpha]^{24}{ }_{405}=+49.2^{\circ}\left(c 0.55, \mathrm{CHCl}_{3}\right)$.

Preparation of ($2 S, 3 R, 5 S$)-3-Acetyl-1, 2-dibenzyl-5-nonylpyrrolidine (27) and ($2 R, 3 S, 5 S$)-3-Acetyl-1, 2-dibenzyl-5-nonylpyrrolidine (28). Method A. Et $\mathbf{t}_{2} \mathrm{AlCl}$-Promoted Rearrangement of Oxazolidine 26. A mixture of amino alcohol 13 ($342 \mathrm{mg}, 1.22 \mathrm{mmol}$), freshly distilled decanal ($199 \mathrm{mg}, 1.28 \mathrm{mmol}$), and 2.4 mL of dry toluene was heated at reflux in a Dean-Stark apparatus for 2 h to form the crude oxazolidine 26: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.13$ $(\mathrm{m}, 10 \mathrm{H}), 5.60(\mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=17.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.76 (dd, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.05(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Additional dry toluene (13 mL) was added, the resulting solution was cooled in an ice bath, and a toluene solution of $\mathrm{Et}_{2} \mathrm{AlCl}(1.8 \mathrm{M}$, $0.338 \mathrm{~mL}, 0.609 \mathrm{mmol}$) was added dropwise over 5 min . The reaction mixture then was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and was maintained at
this temperature for 4 h . Half of the reaction solution was removed and quenched with $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL})$. The remainder of the reaction solution was heated at $85^{\circ} \mathrm{C}$ for 20 min , at which time the reaction was quenched with ice-cooled $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL})$. These two portions were worked up identically: the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 25 \mathrm{~mL}$), the combined extracts were washed with brine $(2 \times 50$ mL), dried over MgSO_{4}, and concentrated, and the residue was purified on silica gel (1:1:0.02 hexanes $\left.-\mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$. The $23^{\circ} \mathrm{C}$ reaction provided $122 \mathrm{mg}\left(48 \%, 97 \% \mathrm{ee}^{36}\right)$ of $27,37.4 \mathrm{mg}(15 \%, 28 \%$ ee) of 28, and $49 \mathrm{mg}(19 \%)$ of oxazolidine 26 . The $85^{\circ} \mathrm{C}$ reaction provided $41 \mathrm{mg}(16 \%, 85 \%$ ee $)$ of $27,171 \mathrm{mg}\left(67 \%, 62 \% \mathrm{ee}^{36}\right)$ of 28 , and 7 mg (3\%) of oxazolidine 26.

Method B. Trifluoroacetic Acid (TFA)-Promoted Rearrangement of Oxazolidine 26. A crude sample of oxazolidine 26 was prepared identically from $13(1.14 \mathrm{~g}, 4.06 \mathrm{mmol})$ and decanal (633 $\mathrm{mg}, 4.06 \mathrm{mmol}$). A solution of this material and TFA (13.5 mL) was heated at reflux for 2 h , allowed to cool to $23^{\circ} \mathrm{C}$, and then concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the resulting solution was extracted with $2 \mathrm{~N} \mathrm{NaOH}(2 \times 100 \mathrm{~mL})$. The organic layer was washed with brine (100 mL), dried over MgSO_{4}, and concentrated. Purification of the crude product as described in method A provided 27 ($1.32 \mathrm{~g}, 78 \%$ yield, $86 \% \mathrm{ee}^{36}$) and 28 ($99 \mathrm{mg}, 6 \%$ yield, $78 \% \mathrm{ee}^{36}$).

27: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-6.90(\mathrm{~m}, 10 \mathrm{H}), 3.99(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=10.5,6.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=12.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.62$ (ddd, $J=9.5,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dd, $J=12.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=13.1,9.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 (ddd, $J=13.1,6.7,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,139.8,139.5,129.2,129.1,128.5$, 128.4, 128.3, 128.1, 126.8, 126.1, 64.5, 60.4, 53.2, 51.0, 33.7, 32.7, 31.9, 30.0, 29.7, 29.6, 29.3, 26.2, 22.7, 14.1 ppm ; IR (NaCl) 3029, 2955, 2924, 2855, 1712, $698 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 420.3244$ (420.3266 calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}, \mathrm{MH}$); $[\alpha]^{26} \mathrm{D}=25.5^{\circ},[\alpha]^{26}{ }_{577}=26.6^{\circ}$, $[\alpha]^{26}{ }_{546}=28.8^{\circ},[\alpha]^{26}{ }_{435}=26.9^{\circ},[\alpha]^{26}{ }_{405}=15.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .28:$ ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.06(\mathrm{~m}, 10 \mathrm{H}), 3.93(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dt}, J=9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dt}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=13.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (ddd, $J=12.5,6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.68 $(\mathrm{s}, 3 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,140.2,139.2,129.5$, 129.1, 128.2, 128.1, 128.0, 126.8, 126.2, 68.6, 64.6, 57.8, 54.1, 42.7, $35.2,33.5,31.9,31.6,29.9,29.6,29.5,29.3,28.8,26.2,22.7,14.1$ ppm; IR (NaCl) 3027, 2954, 2925, 2855, 1710, 1494, 1353, 751, 700 cm^{-1}; HRMS (CI, isobutane) $m / z 420.3249$ (420.3266 calcd for $\mathrm{C}_{29} \mathrm{H}_{42^{-}}$ $\mathrm{NO}, \mathrm{MH}) ;[\alpha]^{25}{ }_{\mathrm{D}}=-0.05^{\circ},[\alpha]^{25}{ }_{577}=-0.7^{\circ},[\alpha]^{25}{ }_{546}=-1.8^{\circ},[\alpha]^{25}{ }_{435}$ $=-2.1^{\circ},[\alpha]^{25}{ }_{405}=-0.32^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Conversion of Acetylpyrrolidine 27 to 28. A solution of 27 (1.13 $\mathrm{g}, 2.70 \mathrm{mmol}, 86 \%$ ee, prepared by method B) in dry toluene (40 mL) was dried by heating for 2 h at reflux through a Soxhlet apparatus containing CaC_{2}. This solution then was allowed to cool to $23^{\circ} \mathrm{C}$, and a toluene solution of $\mathrm{Et}_{2} \mathrm{AlCl}(1.8 \mathrm{M}, 0.15 \mathrm{~mL}, 0.270 \mathrm{mmol})$ was added dropwise. The resulting solution was heated at $85^{\circ} \mathrm{C}$ for 1 h , cooled to $23^{\circ} \mathrm{C}$ in a water bath, and quenched with 1 N NaOH (50 $\mathrm{mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times$ 100 mL), and the combined organic phases were washed with brine (2 $\times 100 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated. Purification of the residue on silica gel (1:1:0.015 hexanes- $\left.\mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$ gave 794 mg ($70 \%, 86 \% \mathrm{ee}^{36}$) of pyrrolidine 28 and $77 \mathrm{mg}\left(7 \%, 75 \% \mathrm{ee}^{36}\right)$ of recovered 27.
(2R,3S,5S)-3-Acetyl-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine (29). A 780 mg sample of $28(1.86 \mathrm{mmol}, 86 \%$ ee; prepared by $\mathrm{Et}_{2} \mathrm{AlCl}$-catalyzed rearrangement of 27) $\mathrm{Pd} / \mathrm{C}(78 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w})$, $\mathrm{MeOH}(22 \mathrm{~mL})$, and concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ was maintained under H_{2} (1 atm) at $23^{\circ} \mathrm{C}$ for 12 h . After concentration, the residue was dissolved in $\mathrm{CHCl}_{3}(19 \mathrm{~mL})$, solid $\mathrm{NaHCO}_{3}(1.56 \mathrm{~g}, 10$ equiv) was added, and after CO_{2} evolution ceased $\mathrm{EtOCOCl}(0.27 \mathrm{~mL}, 2.8 \mathrm{mmol})$ was added dropwise over 1.5 min . The resulting mixture was maintained under N_{2} at $23^{\circ} \mathrm{C}$ for 1 h and filtered, and the filtrate was

[^11]concentrated. Purification of the residue on silica gel ($5: 1$ hexanesEtOAc) provided $29(651 \mathrm{mg}, 87 \%)$ as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}$) $\delta 7.30-6.95(\mathrm{~m}, 5 \mathrm{H}), 4.46(\mathrm{dt}, J=8.9,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{dt}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 17 \mathrm{H}), 1.09(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5}-\right.$ $\left.\mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 205.3,155.5,139.0,129.3,128.4,126.9,62.5,61.0$, $59.0,54.3,42.1,36.7,33.4,32.4,30.2,30.1,29.8,27.6,26.9,23.1$, $14.9,14.2 \mathrm{ppm}$; IR (film) 2955, 2925, 1716, 1696, 1465, 1347, 1113, $701 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 402.3020$ (402.3008 calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{3}, \mathrm{MH}\right) ;[\alpha]^{25} \mathrm{D}=23.5^{\circ},[\alpha]^{25}{ }_{577}=25.0^{\circ},[\alpha]_{546}^{25}=29.4^{\circ}$, $[\alpha]^{25}{ }_{435}=54.1^{\circ},[\alpha]^{25}{ }_{405}=72.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
($\mathbf{2 R , 3 S , 5 S}$)-3-Acetoxy-2-benzyl-1-(ethoxycarbonyl)-5-nonylpyrrolidine (30). The urea- $\mathrm{H}_{2} \mathrm{O}_{2}$ complex ${ }^{19}(98 \%, 6.59 \mathrm{~g}, 68.7 \mathrm{mmol})$ was added in one portion to a stirring solution of 29 ($551 \mathrm{mg}, 1.37 \mathrm{mmol}$) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.6 \mathrm{~mL})$. The resulting mixture was cooled to -4 ${ }^{\circ} \mathrm{C}$, TFAA ($0.81 \mathrm{~mL}, 5.7 \mathrm{mmol}$) was added dropwise over 8 min , and the resulting yellow-colored heterogeneous mixture was stirred at -4 ${ }^{\circ} \mathrm{C}$ for 24 h . A second portion (0.81 mL) of TFAA then was added, the reaction mixture was stirred at $-4^{\circ} \mathrm{C}$ for 24 h , a final portion $(0.81$ mL) of TFAA was added, and the reaction mixture again stirred at -4 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture then was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (150 $\mathrm{mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 40 \mathrm{~mL})$, and the aqueous layers were back-extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine $(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. Purification of the residue on silica gel ($15: 1$ hexanes-EtOAc) provided $30(377 \mathrm{mg}, 66 \%)$ as a yellowish oil and 17.6 mg (3%) of recovered ketone 29. 30: ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100^{\circ} \mathrm{C}\right) \delta 7.16-6.96(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.08(\mathrm{dt}, J=5.10,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.95,(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=$ $13.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.16(\mathrm{~m}, 19 \mathrm{H}), 1.03(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 100{ }^{\circ} \mathrm{C}\right) \delta 169.4,155.8,138.6,130.1,127.9,126.8,76.8$, $66.4,61.0,58.0,36.7,32.4,30.3,30.14,30.10,29.8,26.6,23.1,19.9$, $14.8,14.2 \mathrm{ppm}$; IR (film) $3028,2925,2856,1744,1701,1496,1411$, $1238,1114 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $\mathrm{m} / \mathrm{z} 418.2940$ (418.2957 calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{4}, \mathrm{MH}\right) ;[\alpha]_{\mathrm{D}}^{25}=38.7^{\circ},[\alpha]^{25}{ }_{577}=40.3^{\circ},[\alpha]^{25}{ }_{546}=46.9^{\circ}$, $[\alpha]^{25}{ }_{435}=80.3^{\circ},[\alpha]^{25}{ }_{405}=96.2^{\circ}\left(c 1.13, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4}: \mathrm{C}, 71.89 ; \mathrm{H}, 9.42 ; \mathrm{N}, 3.36$. Found: C, $71.99 ; \mathrm{H}, 9.40 ; \mathrm{N}$, 3.32 .
(2R,3S,5S)-2-Benzyl-3-hydroxyl-1-methyl-5-nonylpyrrolidine (31). A mixture of $30(300 \mathrm{mg}, 0.719 \mathrm{mmol})$, dry THF (2 mL), and LiAlH_{4} powder $(95 \%, 0.137 \mathrm{~g}, 3.60 \mathrm{mmol})$ was stirred at $23^{\circ} \mathrm{C}$ for 7 h . The reaction mixture then was cooled in an ice bath, and $\mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{~mL})$, $15 \% \mathrm{NaOH}(0.14 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.42 \mathrm{~mL})$ were added. The resulting rapidly stirred mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 1 h , the mixture was filtered and the filtrate was concentrated. Purification of the residue on silica gel ($4: 1$ hexanes -EtOAc) provided 31 (227 mg , 100%) as a yellowish wax: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.21$ $(\mathrm{m}, 5 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=$ $13.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 1.76$ (ddd, $J=13.2,6.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.13(\mathrm{~m}, 16 \mathrm{H})$, $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0$, 129.2, 128.6, 126.3, 74.6, 64.8, 39.4, 39.2, 39.1, 33.9, 31.9, 29.9, 29.6, $29.5,29.3,26.4,22.6,14.1 \mathrm{ppm}$; IR (film) $3396,2955,2855,1464$, $1455,1056 \mathrm{~cm}^{-1}$; HRMS (CI, isobutane) $m / z 318.2770$ (318.2796 calcd for $\left.\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}, \mathrm{MH}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-0.5^{\circ},[\alpha]^{25}{ }_{577}=-1.6^{\circ},[\alpha]^{25}{ }_{546}=-1.5^{\circ}$, $[\alpha]^{25_{435}}=-7.2^{\circ},[\alpha]^{25}{ }_{405}=-11.4^{\circ}\left(c \quad 1.15, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}: \mathrm{C}, 79.43 ; \mathrm{H}, 11.12 ; \mathrm{N}, 4.41$. Found: C, 79.28; H, 11.11; N, 4.38.
(2R,5S)-2-Benzyl-1-methyl-5-nonyl-3-oxopyrrolidine (32). Following the general procedure of Swern, ${ }^{23}$ a solution of $(\mathrm{COCl})_{2}(0.10$ $\mathrm{mL}, 150 \mathrm{mg}, 1.2 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ was added dropwise at $-66^{\circ} \mathrm{C}$ over 5 min to a solution of DMSO $(0.170 \mathrm{~mL}, 187 \mathrm{mg}$, $2.40 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$. The resulting solution was maintained at $-66^{\circ} \mathrm{C}$ for 20 min , and then a solution of $31(190 \mathrm{mg}$, $0.600 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ was added dropwise over 5 min. The resulting solution was maintained at -40 to $-55^{\circ} \mathrm{C}$ for 30 min, cooled to $-66^{\circ} \mathrm{C}$, and dry $\mathrm{Et}_{3} \mathrm{~N}(0.50 \mathrm{~mL}, 3.60 \mathrm{mmol})$ was added over 2 min . The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ at
which temperature $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the mixture then was allowed to warm to $23^{\circ} \mathrm{C}$. The aqueous layer was separated and backextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and concentrated. Purification of the residue on silica gel ($10: 1$ hexanesEtOAc) provided ketone 32 ($140 \mathrm{mg}, 74 \%$) as a pale-yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.16$ (m, 5 H), 3.05 (dd, $J=14.3$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=18.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (dd, $J=18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.9,154.5,138.5,129.7,128.0$, 126.1, 74.4, 62.5, 42.8, 39.3, 35.9, 32.9, 31.9, 29.8, 29.6, 29.3, 25.6, $22.7,14.1 \mathrm{ppm}$; \mathbb{R} (film) 2955, 2926, 2855, 1757, 1455, 1156, 898 cm^{-1}; HRMS (CI, isobutane) m/z 316.2614 (316.2632 calcd for $\mathrm{C}_{21} \mathrm{H}_{34}-$ NO, MH); $[\alpha]^{25} \mathrm{D}=29.3^{\circ},[\alpha]^{25}{ }_{577}=29.6^{\circ},[\alpha]^{25}{ }_{546}=34.2^{\circ},[\alpha]^{25}{ }_{435}$ $=26.7^{\circ},[\alpha]^{25}{ }_{405}=38.1^{\circ}\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
Preparation of ent-Preussin from 32. To a solution of 32 (50 mg , 0.159 mmol) and 1 mL of dry THF at $-45{ }^{\circ} \mathrm{C}$ was added LiAlH_{4} powder ($18 \mathrm{mg}, 98 \%, 0.476 \mathrm{mmol}$) in one portion. The resulting slurry was maintained at -45 to $-35^{\circ} \mathrm{C}$ for 4 h and then worked up as described for the preparation of 31. Purification of the crude product by chromatography on silica gel ($6: 1$ hexanes-EtOAc) provided ent-1 $(45 \mathrm{mg}, 90 \%)$ as a yellowish wax-like solid and $35(4.4 \mathrm{mg}, 9 \%)$ as a yellow oil. ent-1: $[\alpha]^{26} \mathrm{D}=-21.6^{\circ},[\alpha]^{26}{ }_{577}=-22.8^{\circ},[\alpha]^{26}{ }_{546}=$ $-25.8^{\circ},[\alpha]^{26}{ }_{435}=-51.6^{\circ},[\alpha]^{26}{ }_{405}=-65.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Determination of the Absolute Configuration of Acetylpyrrolidine 27 by ${ }^{1} \mathrm{H}$ NMR Analysis of the (\boldsymbol{R}) - and ((S)-O-Methylmandelate Esters 35 and 36. The preparation of alcohol 34 from 27 is detailed in supplementary material. A solution of $\mathbf{3 4}(8 \mathrm{mg}, 0.02 \mathrm{mmol}),(R)$ or (S)-O-methylmandelic acid ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), DCC ($5 \mathrm{mg}, 0.02$ mmol), and 0.25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was maintained at $23^{\circ} \mathrm{C}$ for 24 h . After filtration, the filtrate was concentrated and the residue purified on silica gel ($4: 1$ hexanes-EtOAc) to give $\sim 3 \mathrm{mg}(\sim 45 \%$) of 35 or 36 as well as recovered 34 . ${ }^{1} \mathrm{H}$ NMR signals for the key hydrogens of esters $\mathbf{3 5}$ and 36 are summarized in the table that follows. ${ }^{22}$

35

36

hydrogen	35^{a}	36^{a}
H_{2}	3.16	3.24
H_{4}	2.36	2.24
H_{6}	2.93	3.01 .2 .37
${ }^{\mathrm{a}} \ln \mathrm{CDCl}_{3}, \delta$.		

Acknowledgment. Support of this research by NIH-NS12389 and SmithKline Beecham is gratefully acknowledged. NMR and mass spectra were determined at UCI with spectrometers acquired with the assistance of NSF Shared Instrumentation Grants. We particularly thank Dr. Joseph Ziller, Director UCI Crystallography Laboratory, for the single crystal X-ray analysis of the hydrochloride salt of $\mathbf{1 5}$ and the hydrobromide salt of 33, Dr. Jeijun Wu for assistance with NOE measurments, and Dr. Michael Calter for carrying out molecular mechanics calculations.

Supplementary Material Available: Experimental details for the preparation of 33 and 34 , tables of ${ }^{1} \mathrm{H}$ NMR assignments and decoupling data for 15,19 , and 22 , and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11, 16, 27-29, and 32 (17 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts. November 1, 1994.
 (1) Publication 27 in the series Synthesis Applications of Cationic AzaCope Rearrangements. For part 26. see: Knight. S. D.; Overman. L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293.
 (2) (a) Schartz, R. E.; Liesch, J.; Hensens, O.; Zitano, L.; Honeycutt, S.; Garrity, G.; Fromtling, R. A.; Onishi; J.; Monaghan, R. J. Antibiot. 1988, 1774. (b) Johnson, J. H.; Phillipson, D. W.; Kahle, A. D. J. Antibiot. 1989, 1184.
 (3) Pak, C. S.; Lee, G. H. J. Org. Chem. 1991, 56, 1128.
 (4) Shimazaki, M.; Okazaki, F.; Nakajima, F.; Ishikawa, T.; Ohta, A. Heterocycles 1993, 36, 1823.
 (5) (a) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115 , 11485. (b) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721.
 (6) For brief reviews, see: (a) Overman, L. E.; Ricca, D. J. In Comprehensive Organic Synthesis; Heathcock, C. H., Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1007-1046. (b) Overman, L. E. Abstract. 33th National Organic Symposium 1993, 96.

[^1]: (7) Doedens, R. J.; Meier, G. P.; Overman, L. E. J. Org. Chem. 1988,

[^2]: (10) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
 (11) Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676.
 (12) Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Chem. Pharm. Bull. 1988, 36, 3341.

[^3]: (13) The authors have deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained on request, from the director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.
 (14) Carboethoxylation of this sample (EtOCOCl, $\mathrm{NaHCO}_{3}, \mathrm{CHCl}_{3}$) provided 20.

[^4]: (15) Suzuki, M.; Takada, H.; Noyori, R. J. Org. Chem. 1982, 47, 902.
 (16) Rastetter, W. H.; Richard, T. J.; Lewis, M. D. J. Org. Chem. 1978, 43, 3163.
 (17) Lapalme, R.; Borschberg, H.-J.; Soucy, P.; Deslongchamps, P. Can. J. Chem. 1979, 57, 3272.
 (18) Bolm, C.; Schlingloff, G.; Weickhardt, K. Tetrahedron Lett. 1993, 34, 3405.
 (19) Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. Synlett 1990, 533.
 (20) Attempts to improve the introduction of the $\mathrm{C}(3)$ hydroxyl functionality by changing the nitrogen protecting group to $\mathrm{Cl}_{3} \mathrm{CCH}_{2} \mathrm{OCO}, \mathrm{Cl}_{3}$ $\mathrm{CC}(\mathrm{Me})_{2} \mathrm{OCO}, \mathrm{Me}_{3} \mathrm{COCO}, \mathrm{PhOCO}, \mathrm{CF}_{3} \mathrm{CO}, \mathrm{CF}_{3} \mathrm{SO}_{2}, \mathrm{MeSO}_{2}$, ($\left.i-\mathrm{Pr}\right)_{3} \mathrm{Si}$, or 9-phenylfluorenyl provided derivatives that underwent Baeyer-Villiger oxidation with TFPAA less efficiently than 20.

[^5]: (24) This comparison undoubtedly over-estimates the enantiomeric purity of ent-1. ent-Preussin prepared as summarized in Scheme 6 should have an enantiomeric purity of $\sim 87 \%$, since no crystalline intermediates intervene between 28 and ent-1.

[^6]: (25) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1965; Chapter 1.
 (26) To further pursue effects of substitution in the tether on the stereochemical outcome of aza-Cope-Mannich reactions, we plan to study a transformation analogous to that depicted in Scheme 8^{8} with an acetonederived iminium cation.

[^7]: (27) (a) Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989. 111, 4379. (b) Saunders, M.; Houk, K. N.; Wu, Y.-D.; Still, W. C.; Lipton, M.: Chang, G.; Guida, W. C. J. Am. Chem. Soc. 1990, 112, 1419.
 (28) Calculations employed the Monte Carlo search routine of MacroModel V3.5X. The nitrogen was allowed to freely invert. There were several structures with the same nitrogen configuration within $2.0 \mathrm{kcal} / \mathrm{mol}$ of the minimum energy conformers shown in Figure 3.

[^8]: (31) General experimental details: tetrahydrofuran (THF) and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from Na and benzophenone. Dimethylformamide (DMF) was distilled from CaH_{2} at 20 man , while $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene, toluene, and diisopropylamine were distilled from CaH_{2} at atmospheric pressure. The molarities indicated for organolithium reagents were established by titration with 2,5-dimethoxybenzyl alcohol. ${ }^{32}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were measured at 300 and 75 , and 500 and 125 MHz , respectively, with Nicolet Omega 500 , Nicolet GN-500, Varian AC 300, or Nicolet QE 300 spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported as δ values in Ppm relative to TMS. ${ }^{1} \mathrm{H}$ NMR coupling constants are reported in hertz and refer to apparent multiplicities and not true coupling constants. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), etc. Mass spectra were measured using a VG Analytical 7070E or Fisons Autospec spectrometer. Infrared spectra were recorded with a Nicolet 5DBX FTIR spectrometer. Optical rotations were measured with a JASCO DIP- 360 digital polarimeter; concentration c is reported in $\mathrm{g} / 100 \mathrm{~mL}$. Microanalyses were performed by Atlantic Microlab, Atlanta, GA. TLC and column chromatography were typically performed as described by Still ${ }^{33}$ using E. Merck silica gel. Radial chromatography was done with a Harrison Research Chromatotron. All reactions were conducted under nitrogen or argon and concentrations were performed under reduced pressure using a Büchi rotary evaporator.
 (32) Winkle, M. R.; Lansinger, J. M.; Ronald, R. C. J. Chem. Soc., Chem. Commun. 1980, 87.
 (33) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^9]: (34) HPLC conditions: stationary phase-Chiralcel OD, mobile phase $=$ 99:1 (90:10 for 13) hexane-i-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}(0.6 \mathrm{~mL} / \mathrm{min}$ for 13), detection UV detection at 254 NM . Reference samples of ent-12 and ent-13 were prepared from (R)-phenylalanine following the same procedure used to prepare 12 and 13.

[^10]: (35) Same conditions as described in footnote 33 with a flow rate $=0.2$

[^11]: (36) HPLC conditions: Chiralcel OJ, $99: 1$ or $98: 2$ hexane-EtOH, 0.2 or $0.3 \mathrm{~mL} / \mathrm{min}$.

